Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Aichholzer, Oswin; Wang, Haitao (Ed.)We show that a variant of the continuous Fréchet distance between polygonal curves can be computed using essentially the same algorithm used to solve the discrete version. The new variant is not necessarily monotone, but this shortcoming can be easily handled via refinement. Combined with a Dijkstra/Prim type algorithm, this leads to a realization of the Fréchet distance (i.e., a morphing) that is locally optimal (aka locally correct), that is both easy to compute, and in practice, takes near linear time on many inputs. The new morphing has the property that the leash is always as short as possible. These matchings/morphings are more natural, and are better than the ones computed by standard algorithms - in particular, they handle noise more graciously. This should make the Fréchet distance more useful for real world applications. We implemented the new algorithm, and various strategies to obtain fast practical performance. We performed extensive experiments with our new algorithm, and released publicly available (and easily installable and usable) Julia and Python packages. In particular, the Julia implementation, for computing the regular Fréchet distance, seems to be {significantly faster} than other currently available implementations. See Table 2.2. Our algorithms can be used to compute the almost-exact Fréchet distance between polygonal curves. Implementations and numerous examples are available here: https://frechet.xyz.more » « lessFree, publicly-accessible full text available January 1, 2026
- 
            Nishat, Rahnuma Islam (Ed.)In this paper we consider computing the Fréchet distance between two curves where we are allowed to locally permute the vertices. Specifically, we limit each vertex to move at most k positions from where it started, and give fixed parameter tractable algorithms in this parameter k, whose running times match the standard Fréchet distance computation running time when k is a constant. Furthermore we also show that computing such a local permutation Fréchet distance is NP-hard when considering the weak Fréchet distance.more » « less
- 
            Mulzer, Wolfgang; Phillips, Jeff M (Ed.)We define and investigate the Fréchet edit distance problem. Given two polygonal curves π and σ and a non-negative threshhold value δ, we seek the minimum number of edits to σ such that the Fréchet distance between the edited σ and π is at most δ. For the edit operations we consider three cases, namely, deletion of vertices, insertion of vertices, or both. For this basic problem we consider a number of variants. Specifically, we provide polynomial time algorithms for both discrete and continuous Fréchet edit distance variants, as well as hardness results for weak Fréchet edit distance variants.more » « less
- 
            In this paper we introduce and formally study the problem of $$k$$-clustering with faulty centers. Specifically, we study the faulty versions of $$k$$-center, $$k$$-median, and $$k$$-means clustering, where centers have some probability of not existing, as opposed to prior work where clients had some probability of not existing. For all three problems we provide fixed parameter tractable algorithms, in the parameters $$k$$, $$d$$, and $$\eps$$, that $$(1+\eps)$$-approximate the minimum expected cost solutions for points in $$d$$ dimensional Euclidean space. For Faulty $$k$$-center we additionally provide a 5-approximation for general metrics. Significantly, all of our algorithms have only a linear dependence on $$n$$.more » « less
- 
            Pankratov, Denis (Ed.)In the clustering with neighborhoods problem one is given a set S of disjoint convex objects in the plane and an integer parameter k ≥ 0, and the goal is to select a set C of k center points in the plane so as to minimize the maximum distance of an object in S to its nearest center in C. Previously [HKR21] showed that this problem cannot be approximated within any factor when S is a set of disjoint line segments, however, when S is a set of disjoint disks there is a roughly 8.46 approximation algorithm and a roughly 6.99 approximation lower bound. In this paper we investigate this significant discrepancy in hardness between these shapes. Specifically, we show that when S is a set of axis aligned squares of the same size, the problem again is hard to approximate within any factor. This surprising fact shows that the discrepancy is not due to the fatness of the object class, as one might otherwise naturally suspect.more » « less
- 
            Pankratov, Denis (Ed.)Given a set $$P$$ of $$n$$ points in the plane, and a parameter $$k$$, we present an algorithm, whose running time is $$O(n^{3/2} \sqrt{k}\log^{3/2} n + kn\log^2 n)$$, with high probability, that computes a subset $$Q* \subseteq P$$ of $$k$$ points, that minimizes the Hausdorff distance between the convex-hulls of $Q*$ and $$P$$. This is the first subquadratic algorithm for this problem if $$k$$ is small.more » « less
- 
            In this article, we study a wide range of variants for computing the (discrete and continuous) Fréchet distance between uncertain curves. An uncertain curve is a sequence of uncertainty regions, where each region is a disk, a line segment, or a set of points. A realisation of a curve is a polyline connecting one point from each region. Given an uncertain curve and a second (certain or uncertain) curve, we seek to compute the lower and upper bound Fréchet distance, which are the minimum and maximum Fréchet distance for any realisations of the curves. We prove that both problems are NP-hard for the Fréchet distance in several uncertainty models, and that the upper bound problem remains hard for the discrete Fréchet distance. In contrast, the lower bound (discrete [ 5 ] and continuous) Fréchet distance can be computed in polynomial time in some models. Furthermore, we show that computing the expected (discrete and continuous) Fréchet distance is #P-hard in some models. On the positive side, we present an FPTAS in constant dimension for the lower bound problem when Δ/δ is polynomially bounded, where δ is the Fréchet distance and Δ bounds the diameter of the regions. We also show a near-linear-time 3-approximation for the decision problem on roughly δ-separated convex regions. Finally, we study the setting with Sakoe–Chiba time bands, where we restrict the alignment between the curves, and give polynomial-time algorithms for the upper bound and expected discrete and continuous Fréchet distance for uncertainty modelled as point sets.more » « less
- 
            Bojanczyk, Mikolaj; Chekuri, Chandra (Ed.)Given a point set P in the plane, we seek a subset Q ⊆ P, whose convex hull gives a smaller and thus simpler representation of the convex hull of P. Specifically, let cost(Q,P) denote the Hausdorff distance between the convex hulls CH(Q) and CH(P). Then given a value ε > 0 we seek the smallest subset Q ⊆ P such that cost(Q,P) ≤ ε. We also consider the dual version, where given an integer k, we seek the subset Q ⊆ P which minimizes cost(Q,P), such that |Q| ≤ k. For these problems, when P is in convex position, we respectively give an O(n log²n) time algorithm and an O(n log³n) time algorithm, where the latter running time holds with high probability. When there is no restriction on P, we show the problem can be reduced to APSP in an unweighted directed graph, yielding an O(n^2.5302) time algorithm when minimizing k and an O(min{n^2.5302, kn^2.376}) time algorithm when minimizing ε, using prior results for APSP. Finally, we show our near linear algorithms for convex position give 2-approximations for the general case.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available